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In this report, a model designed for the description of the flow of two miscible phases 
in a fluidized bed is discussed. Apart from basic problems of modelling accurately 
such multi-phase flows, little analytical progress had been achieved in the 
investigation of a certain standard model based on the theory of interacting 
continua. I t  turns out, however, that the model under consideration can be 
investigated with the help of bifurcation theory. In particular, the methods of the 
theory of bifurcation with symmetry can be applied owing to the symmetries of the 
system. 

In general, a stationary homogeneous state exists in fluidized beds which can 
become unstable when the physical parameters of the system are varied. Then 
pattern formation takes place, e.g. in the form of one- and/or two-dimensional 
waves, bubbles, or convection patterns ; also turbulent behaviour has been observed. 

In order to understand the occurrence of wave patterns and other phenomena as 
an inherent feature of the system, a finite, but periodically continued two- 
dimensional bed is investigated. While this suppresses certain boundary effects, it 
gives us thorough insight into the principal behaviour of this complicated system. 

In particular, it allows us not only to perform easily a linear stability analysis of 
the basic state of uniform fluidization, but also to conclude that bifurcation of 
travelling waves occurs when this state becomes unstable. Well-known patterns like 
vertical and oblique travelling waves (OTW) of the form u(2, y,t) = iZ(x-utk ky), 
k > 0, are discovered. Owing to symmetry, the existence of standing travelling 
waves (STW) of the form u(x,  y, t )  = iZ(z-ut, y) is also expected, but regrettably no 
mathematically rigorous proof of this last conjecture is presently available. 

Bubble formation can also be approached via the instability of a vertical travelling 
plane wave train to transverse perturbations. Then a secondary stationary 
bifurcation to another kind of standing travelling waves takes place. This scenario 
is also in agreement with experimental observations. In addition, the occurrence of 
bifurcations of higher order, which lead to more and more complex wave patterns 
and are to be found on the route to turbulence, can be deduced. 

1. Introduction 
A fluidized bed consists of a collocation of solid particles which is subject to a 

vertical, upward flow of fluid or gas. On increasing the fluid flow rate slowly, a state 
is reached where the particles are free to move owing to the balance of the downward 
gravitational force with the upward drag exerted by the fluid. This state, where the 
behaviour of the system is similar to that of fluids, is called ‘fluidization ’. Increasing 
the flow rate above that of minimum fluidization will cause the bed to expand 
uniformly until a critical flow rate is reached, a t  which inhomogeneities like 
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‘bubbles’ or ‘slugs’ develop ; also plane waves propagating upwards through the bed 
and thereby developing a transversal structure have been observed. In  changing the 
parameters, especially the entrance velocity of the fluid and with it the flow rate, 
both bubble and turbulent flows can be generated (with diverse transitions or 
successions, respectively) (Didwania & Homsy 1981 a). 

Although fluidized beds have been investigated and used for a long time, many 
aspects of the motions of the particular phases are still unclear, and the development 
of the corresponding theory has made only slow progress. For the past one or two 
decades two-phase flows have been described as interpenetrating and interacting 
continua (Jackson 1971 ; Garg & Pritchett 1975; Drew 1983). The treatment of such 
models, however, did not go much beyond very simplifying considerations ; in most 
papers only the equations linearized at the homogeneous basic flow were investigated 
for different geometries and boundary conditions (Medlin, Wong & Jackson 1974 ; 
Spiegel & Childress 1975 ; Didwania & Homsy 1981 b) .  To our knowledge, Spiegel & 
Childress (1975) were the first to suggest that  bifurcation methods might be applied 
successfully to  this problem. I n  another approach referring to Benjamin-Feir 
instabilities, Didwania & Homsy (1982) computed the possible instability of a plane 
wave train to transverse perturbations as a resonance effect of the first harmonic of 
the one-dimensional wave with ‘ sidebands ’ (small transverse wavenumbers). 

Further nonlinear treatments of the problem have been carried out almost 
exclusively in one space dimension. Kluwick (1983) used singular perturbation 
theory to derive simplified equations, which yield either shock or travelling wave 
solutions depending on whether viscosity is taken into account or not. Similar 
approaches were used recently by Ganser & Drew (1987, 1990), and Kurdyumov & 
Sergeev (1987) and Sergeev (1990). 

After a summarizing analysis of the diverse terms occurring in the linearized 
theory and their meaning within a weakly nonlinear theory (Liu 1982), Liu (1983) 
tried to prove the existence of a non-trivial state different from the basic state, and 
that the new state is stable when the basic state is unstable. Using a slightly 
simplified model, Needham & Merkin (1983, 1984b, 1986) demonstrated that a 
periodic travelling wave bifurcates from the basic state, if the latter becomes 
unstable. Moreover, their numerical simulations showed waves, whose structures are 
strongly reminiscent of slug flows. Two-dimensional though linear calculations of the 
same authors indicate a bubbly flow (Needham & Merkin 1 9 8 4 ~ ) .  Pritchett, Blake & 
Garg ( 1978) studied numerically slightly different equations in two space dimensions 
and observed the development of bubbles at the orifices on the ground where the 
fluidizing gas or fluid enters the bed. 

I n  the following sections an extended version of the model of Garg & Pritchett 
(1975) will be considered from a bifurcation point of view. Thus, the aforementioned 
approximate investigations can be put onto a firm basis. Furthermore, these 
results can be extended in various directions. Assuming periodicity in space, we will 
show that bifurcations to time-periodic solutions can occur when the basic state of 
homogeneous fluidization becomes unstable. These are either oblique travelling or 
‘standing ’ travelling waves of certain symmetries. The latter in particular are very 
reminiscent of the familiar but yet unexplained bubbles, which occur frequently in 
fluidized beds (figure 1). 

We admit that  there is no general consensus concerning the proper modelling of 
fluidized beds as is expressed once more by the rather different approach of Batchelor 
(1988). The outcome of our analysis, however, shows that the model investigated 
does make sense and may yield an explanation of the various wave patterns observed 
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FIGURE 1. Oblique travelling and standing travelling waves and their relation to bubbling in 
fluidized beds ; coordinate system. 

in two-phase flows. Moreover, Hernandez & Jimenez (1991) recently presented 
numerical calculations based on a similar model. Here a bubble of a quite realistic 
shape was obtained as a secondary instability. This agrees with our predictions (Goz 
1990a). 

The model under consideration is described briefly in $2, followed by a compact 
presentation of the results of the linear stability analysis in $3. In $4 a Galilei- 
transformed coordinate system moving with the velocity of the anticipated travelling 
wave solutions will be described. The analysis of these new equations linearized a t  
the basic state indicates the bifurcation of spatio-temporal oscillating states. 
Whereas the bifurcation of oblique travelling waves can be proved in two different 
ways, the existence of the standing travelling waves remains unclear due to some 
serious mathematical problems connected with models of this kind. Together with 
some resolution possibilities this problem will be discussed at  the end of $4. In  55 
there is a survey of bifurcations of higher order which lead to more and more complex 
flow patterns and lie on the route to turbulence. Finally, in our conclusions we 
summarize our results obtained so far and outline further unsolved problems. 

2. Description of the model 

solution is used to write the equations in dimensionless form. 
First we introduce the model equations and define the basic solution. Then this 

2.1. The basic equations 
We study the pure hydrodynamic problem (i.e. without any chemical reactions, etc.) 
of the interaction of two interpenetrating media in a fluidized bed, where the first 
medium is a gas or fluid and the second consists of small solid particles. It is quite 
common to consider the particle phase as a continuum also (Garg & Pritchett 1975), 
e.g. after carrying out an appropriate averaging process (Jackson 197 l ) ,  although the 
interactions between the phases need to be determined either empirically or by 
means of other modelling considerations and are given at this stage only formally. 
For further simplification it is assumed that the two phases behave like 
incompressible Newtonian fluids, so that density changes are only due to changes in 
the volume fractions of the two phases. Thus, for each single phase the compressible 
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NavierStokes equations (with interaction terms) are assumed to hold, whereas the 
system as a whole behaves like an incompressible fluid in the sense that the mean flow 
is divergence-free. 

Let the volume fraction of the fluid (or gas) be denoted by 4; then the relative- 
densities are given by 

pl=PSu-q5), PZ=Pfq5, 9 E ( O , 1 )  (2.1) 

with p,, pr the constant specific densities of the solid and fluid, respectively. Effective 
fluid and particle pressures are introduced (Garg & Pritchett 1975) : 

P f  = 4Pe9 P s  = (1 - 4) Pse ,  (2 .24 

and the following relation between these pressures is proposed : 

Pse = P e  + g(q5). (2.2b) 

According to Garg & Pritchett (1975), the function g(q5) represents the normal 
component of the particle-particle interaction and has to be determined empirically. 
For incompressible particles i t  is supposed to decrease monotonically with 4 and tend 
to the following limits: 

Using this ansatz, the 
momentum : 

for all 

following conservation laws 

(2.2c) 

are obtained for mass and 

a,( 1 - q5) + V .  [( 1 - 9) u] = 0 (particles), ( 2 . 3 ~ )  

atq5+V-(q5u) = 0 (fluid), (2.3b) 

( 2 . 3 ~ )  

(2.3d) 

where q5 is the voidage, u and u are the velocities of the solid and fluid phases, 
respectively, g is the gravity force, are the strain-stress tensors of the fluid/solid 
phases, and F represents interaction forces. The latter are assumed to be of the form 

F=B(q5)(u-v)-peVq5.  (2.3e) 

The first term represents the drag force, the second results from voidage gradients in 
the fluidized bed. The drag coefficient should be chosen such that for small values of 
(1-4) the Stokes law for a single sphere moving through a viscous medium is 
obtained, i.e. 

p,( 1-4) (a, u+ u -  Vu) = V.u,+  (1  - q5) psg+ F (particles), 

pf $(a, u + u - Vu)  = V - of + q5pf g - F (fluid), 

with n x 3 and 
Do - Stokes’ drag on a single particle - 9,uf 
v, Volume of a particle 2 r z ’  

- -- - - 

where T denotes the radius of the particles. 
We emphasize that the precise form of the drag coefficient is not crucial for our 

analysis; the above form was chosen just for definiteness. More complex forms, in 
particular an additional dependency on Iu- uI, may also be taken into account. Other 
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interaction forces are present, e.g. the so-called virtual mass effect, the precise form 
of which is also not known. Since it turns out that a virtual mass term would have 
a minor influence on the stability properties of both gas and liquid fluidized beds 
only, it will not be taken into account here. 

2 .  The basic state 

As basic state we denote that stationary and homogeneous solution of (2.3a-e), for 
which the particles do not move, while the fluid is moving with constant velocity 
against the direction of gravity. This state is unique up to Galilei transformations, 
if either the corresponding voidage q50 or the fluidization velocity uo is given ; in the 
latter case the function $(l-$)/&$) must be monotone in the interval I : =  (0 , l ) .  
The following relations apply : 

(2 .4a)  

(2.4b) 

Here k = -g/lgl represents the unit vector in the vertical direction which will be 
denoted by x; y is the horizontal direction and x the vector (0, y, 2).  

From now on, the index e denoting the effective fluid pressure pe will be omitted, 
since the particle phase pressure has been eliminated by introducing the function 

Let S = pr/ps < 1. For the special B($)  of (2 .3f ,g) ,  the following 'compatibility 

VP: = - [(I - $0)  P s  + $0 Ptl gk. 

d$). 

relation ' for the diverse parameters results from (2 .4a)  : 

9%4 = (l-S)p,g$,n+', 
2r2  O 

where uo = luol. 
2.3. Rescaling 

The characteristic values, which occur in the basic state (2.4), are used for writing 
(2.3) in dimensionless form. Therefore, let us define the new variables: 

(2 .6a)  

and 

( 2 . 6 ~ )  

This leads to the following parameters 

F = ui/gr 

R = Ps uo T I P S  

= Pf/Ps( 1) (2 .6d)  I Froude number, 

Reynolds number, 

density ratio, 

viscosity coefficients. 
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A, and p, (a = s or f )  are the volume and shear viscosity coefficients. For our purposes 
it is sufficient to keep the viscosity coefficients constant. 

In addition we define 

where according to (2.2c), 
V[(1-$) d#)1 = : G ( $ )  V#3 (2.7 1 

G(#) = -g($)+(l-$)g’($) < 0 for all $ E ( O ,  1). (2.8) 

Thus, the following system of equations is obtained from ( 2 . 3 ~ 3 )  together with 
(2.2a, b), where the ‘hat’  is omitted for convenience: 

-4+V.[(l-r$)v] = 0, ( 2 . 9 ~ )  

d + V . ( $ U )  = 0, (2.9b) 

F(l-$) (U+ v-VV) = - (1 -$) k+B($) (U-  V )  - G ( $ )  V$ 

F 
- (1 -$) Vp+- (V2 +KVV.)V,  

R 
( 2 . 9 ~ )  

F 
R Fd$(li + U *  VU) = - S$k -B( $) (U - U) - #Vp + v - (V2 + KTV * ) U. (2.9d) 

B(#) = -$,(l-$,)(l-S) B(9) = (1-8)- -’$;+l (drag force), (2.9e) 
B(#O) $n 

(compatibility relation) ; (2.9f 1 

(2.99) 

1 F  
$;+l = - 

Periodic boundary conditions in x and y. 

1 - 

k = -g/lgl, U = (0, uy, uz). (2.9h) 

According to (2.4a, b) and the normalization (2.6), the basic state now reads 

$ = A ,  u = 0 ,  (2.104 

(2. l o b )  

vp, = -[1-$,(1-8)]k. (2.10c) 

It must be noted that the Froude number F still depends on $o.  With B(q5) of (2.9e) 
it follows that 

u2 2 2(n+1) 

gr gr 
> (2.1 1) p = 0 = Ut $0 

where (2.12) 

is the terminal free-fall velocity of a single particle in the stationary viscous fluid for 
6 < 1. The relation u, = ut $;+l (here we choose n = 3) is Richardson’s correlation for 
the expansion of uniformly fluidized beds (Richardson 1971). 

A two-dimensional fluidized bed in the (y, z)-plane will be studied, where z denotes 
the vertical direction (against gravity) and y denotes the horizontal coordinate axis. 
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In order to keep the eigenvalues of the linearized equations discrete and the linear 
stability analysis as simple as possible, periodic boundary conditions are chosen. This 
procedure is also suggested by the results in one space dimension, where the existence 
of travelling waves oscillating in space as well as in time can be shown (Needham & 
Merkin 1986). These results can then be extended in various directions, namely to 
global results and two dimensions (GO, 1990b). 

In most investigations so far the fluid has been considered an ideal gas, i.e. u (and 
vK) has been set to zero. More precisely, ‘only’ the dissipation terms of the fluid flow 
have been neglected, but of course not the interaction term B($) ,  which is 
proportional to v according to the compatibility relation (2.9f ). Besides the change 
of type of equation (2 .9d) ,  this is a virtually inconsistent procedure but might be 
justified by asymptotic analysis considerations. The influence of the fluid dissipation 
on possible bifurcations will be evaluated in $4 .  

The additional simplification S =  0 is proposed quite often, since in the 
‘interesting’ cases, in which bubbles occur, it has been observed that pr Q ps, i.e. 
6 4 1. Neglecting the terms - 6 of course changes (2 .9d)  drastically, and even more so 
when u = 0 (in the above sense) is assumed in addition. On the other hand, this is 
convenient, since the fluid velocity can then be eliminated algebraically. For the 
travelling waves this has the consequence that a branch of periodic solutions 
bifurcation from the basic state must terminate (almost) necessarily in a solution of 
infinite period, whereas for certain 6 =+ 0 it can return to the basic state. This may 
restabilize the basic solution (GO, 1990a, b ) .  

For reference we formulate the reduced model, which is obtained by setting 
6 = 0 and neglecting the viscosity of the light phase ( u  = 0 in the sense discussed 
above). We shall not discuss the validity of this singular limit approach. 

Then (2 .9d)  becomes 
0 = - - B ( $ ) ( u - u ) - $ ~ ~ .  (2.13) 

Moreover, if we add ( 2 . 9 ~ )  and (2.9b) to eliminate 3, $ from one of these equations, 
the resulting equation expresses the fact that the mean flow [ ( l - $ )  u+$u] is 
divergence-free. Solving now (2.13) for u and replacing u in the other equations gives 

-a,$+v.[(i-+)U] = 0, ( 2 . 1 4 ~ )  

(2.14b) 

F 
R F( 1 -#) ( U +  V-VV) = - (1 -#) k-Vp-G($)  V$ +- (V2 + K V V . )  tr. ( 2 . 1 4 ~ )  

Taking ( 1  - $) as the relevant variable leads to the usual one-phase barotropic 
compressible fluid flow equations with the external force being replaced by a 
pressure-gradient term, which is in turn a function of the flow itself. 

3. Linear stability analysis of the basic state 

3.1. Derivation of a linear equation for the voidage; definition of parameters 
We describe briefly the results of the linear stability analysis of the basic state. In 
addition, we introduce several important parameters and prove some relations 
among them. 
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The linearization of (2.9) in (4, U, u, V P ) ~  = (q50, k ,  0, a,pok)  is given by 

-d+(l-$o)v.u = 0, (3 . la )  

d+$,v.u+a,$ = 0, (3. lb)  

D =  --Bi+(1-&)(1-2$0) / F  = (n+2) (1 -$0) (1 -4 /F ,  

$ 

E: 1 
1-6 BO -- , M = A I G I  

F O ’  
E =  

P$0(1- $ 0 )  - 

H = -  (‘+‘)(‘-$o),  J =  (1  + K )  90 + H .  

F 
R F( 1 - $o) ir = (1 +Bh +a,.,) $k + B ~ ( u  - V )  -Go V$ - (1 - $ 0 )  Vp + - (V2 + KVV . ) V ,  

j (3.3) 

H h:=- D d := - 
M C m := - 
A ’  ‘:=Ay E ’  J ‘  (3.4) 

f(s) := m-c( 1 -c)-  (s-c)2. (3.5) 

We state some simple but important properties of these coefficients and off. It is easy 
to see that for all $ o ~  (0, l ) ,  8~ [0, l),  V E  [0, 1) the following relations hold: 

0 < c < 1 -q50 < 1 ; 
d 

n + 2 ’  
C<-’ 

and for physical reasons 

Then it  follows also that 

h < d .  

Ah) >fW. 

O < h < l ;  

Furthermore, the function f(s) takes its maximum at  s = c with f(c) = m-c(1-c), 
and satisfiesf($) < m for all ( 8 , ~ )  + (0,O). 
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According to (3.3) and (3.4), we have 

and d 
c < 1 - # o  = - 

n+2  ' 

387 

Also, it is clear that h < 1 since H < J. Now assume h 3 d (of course this is only 
possible if v + 0). Then, because h < 1 we also have d = (n + 2) (1 - #o) < 1 and this 
means that 1 > $o > (n+ l)/(n+2).  Writing out the assumption gives 

and hence the following estimate holds: 

(n+ 1)2 
n+2  

> ( n + 2 ) ( 1 + ~ ) &  > (1+~)-. 

Therefore v-> 1+K (n+l) '  or - he+$Pf > (n+1)2 x 16. 
1 + K  4 + $Ps 

However, the left-hand side is expected to be < 1, since in general for example 
,ut/,us - O(l0-') (F. Ebert 1987, personal communication), and similarly A, < A,. 
Hence the physical parameters are chosen such that we can confine our investigations 
to the case of d > h. 

The inequality (3.8) follows from (3.6) and (3.7) : 

f(h)-f(d) = (d-h)(d+h-2~)  > (d-h) (ny2d+h)  - > 0. 

Finally, the properties off  are obvious from 0 < c < 1, where equality holds for 
s = 0. 

3.2. The dispersion relation, stability conditions 
Stability results are obtained using the ansatz q5 = cpexp (at+&+ iky). This gives 
the dispersion relation 

Aa2+[E+2iCA+ J(A2+k2)]a+iDh-Ch2+M(h2+k2)+iHh(h2+k2) = 0, (3.9) 

which has to be investigated for a€ C, (A, k) €R2\{(0, 0)). (The solutions 4 = const. or 
h = k = 0 are trivial.) 

Note that the correct spectral ansatz ($,u,  o, Vp) = cexp (at+iAz+iky) yields the 
following result - after a large amount of algebra : the expression on the left-hand 
side of (3.9) is multiplied by ( A 2  + k2) Q, where Q is a function of a, A ,  and k2. Setting 
h = k = 0 leads trivially to cnp = 0, whereas the zeros of Q are located in the negative 
half-plane (Re a < 0) and thus yield decaying modes only. Therefore, it is allowable 
to restrict the analysis to the single equation (3.2). 

Separating a into real and imaginary parts with a = ar + iai, the relation 

a, - -A (3.10) 
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is obtained, while crr is determined by the two real zeros of a fourth-order polynomial. 
By elementary calculations we obtain the following criterion for conditional stability : 
the basic state is stable (in the linearized sense) against perturbations with wave 
numbers (A ,  k )  E R2, for which the following relation holds : 

D+Hs 
A2f(q(A2+k2))+mk2 > 0, q(s)  :=- 

E+Js  * 
(3.11) 

From this the stability condition for all ( A ,  k )  follows (unconditional stability) : there 
are no growing modes, if the following relation is satisfied: 

f ( d )  2 0. (3.12) 

To show this we first evaluate the condition (3.11) a t  k = 0 which leads to the 
condition that for q(h2) > 0, f(q) = m-c+2cq-q' > 0 must also hold. Since 

in accordance with (3.7), and since q(0) = d,  ~ ( c o )  = h, it follows that q ~ ( h , d ) .  
Becausef(q) represents a parabola open to the lower half-space and has to be positive 
in the interval (h ,  d ) ,  the two relations f ( h )  2 0, f ( d )  2 0 have to be satisfied. But 
according to (3.8), it is sufficient to require f(d) 2 0. 

Then it is shown that (3.12) is also sufficient for k P 0:  becausef(q(s)) can also be 
written in the form 

f( h) J2s2 + f ( d )  E2 + [f(h) + f ( d )  + (d - h) '1 EJs 
( E  + Js)' f(q(4) = 9 

it is obvious that &(A2 + k')) > 0, if f ( d )  2 0. Hence, (3.11) is satisfied. 
From the above considerations we can note the well-known fact that the main 

instability lies in the vertical direction. There are further (transversal) instabilities 
present in the system, but these are more convenient to investigate within the 
travelling wave approach of the next chapter. 

3.3. Remarks 
(i) As was already noted by Needham & Merkin (1983), the porosity gradient term 

proportional to M is decisive for the stability of the homogeneous fluidized bed. In 
the subsequent investigation of the travelling waves this coefficient will be seen to 
determine mainly their velocity. Although the viscosity coefficients do not enter the 
stability condition, their presence (but not their values) is decisive for the bifurcation 
to periodic travelling waves. 

(ii) In terms of the physical parameters, condition (3.12) means 

IGoI 2 Fd2 + dF( 1 -d)'( 1 - $o)/$o, (3.13) 

whereas f(d)la-o = m- d2 2 0 corresponds to the well known version of 

lGol 2 Fd2 = F(n+2)2(1-$0)2, (3.14) 

taking into account (2.10). (We recall that often G($) = const. is assumed.) Thus, 
when 6 P 0 additional restrictions on the stability of the basic state are obtained. 

(iii) A closer look at the stability conditions (3.12), (3.13) reveals the following 
tendencies. The stability of the basic state decreases with increasing particle inertia 
or decreasing contact stress; it also decreases with increasing drag. The role of the 
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fluid inertia depends on the other parameters, but is seen to have a mainly stabilizing 
effect: a high fluid inertia is destabilizing, if d < t ,  and stabilizing otherwise. Now 
d < means q50 > (2n+3)/(2n+4) = 0.9 for the particular coefficients considered 
here, and this shows the stabilizing influence of the fluid inertia in most regions of the 
bed. 

In addition, the stability of the homogeneous state is restricted by an increasing 
ratio S of the specific densities of the two phases and by an increasing Froude 
number, i.e. an increasing fluidization velocity or a smaller particle size. 

4. Possible bifurcations of two-dimensional travelling waves 

We are searching for travelling wave solutions of (2.9), i.e. solutions of the form 

4.1. Survey 

U ( x ,  y, t )  = O ( x - w t ,  y). (4.1) 

These waves are travelling mainly in the vertical direction ('downstream ') and 
possibly have a transverse structure. Because of our boundary conditions this means 
periodicity in y. We want to find out for which 'wave speeds' w the solution (if it 
exists) is also periodic in 

Below we analyse the linearized equations in the moving coordinate system in order 
to obtain information about the possible bifurcation points. Here w is considered the 
bifurcation parameter. The validity of this procedure and the actual bifurcation to 
travelling waves of the above form has been shown partially (GO, 1990 b )  by use of 
the Lagrangian formulation of a small modification of the reduced model, which is 
obtained by setting S = v = 0 (cf. (2.14)). We shall return to this point at the end, but 
assume for the time being that the conclusions which might be drawn from linear 
theory transfer to the nonlinear regime. Nevertheless, special travelling wave 
solutions can be obtained for the full equations by the more restrictive ansatz (GO, 
1990a, b )  

We will find several double-periodic solutions of the transformed equations 
linearized in the basic state depending on the wavenumber k in the y-direction. 
Because of periodicity, k is restricted to 

x := x-wt ,  w = const. (4.2) 

U ( z ,  y, t )  = D(x  - ot f &y). (4.3) 

(4.4) 

Now the original system of equations as well as the basic state possesses the 
symmetries 0(2), x S0(2), x St. These are due to the invariance under translations in 
space and time -which are identified with rotational symmetries by the demand of 
periodicity - and a reflectional symmetry in the horizontal direction. The identi- 
fication of the action of S0(2), with that of St is found to be equivalent to the 
travelling wave ansatz (cf. Golubitsky & Stewart 1986 for a similar problem, namely 
the Taylor-Couette flow). This yields the spatial symmetry 0(2), x 50(2),, and on the 
basis of the well-known arguments with regard to bifurcation with symmetry (e.g. 
Chossat & Iooss 1985 ; Erneux & Matkowsky 1984 ; Golubitsky & Stewart 1985 ; Iooss 
1984 ; Vanderbauwhede 1982), both travelling and standing (travelling) waves are 
expected. 

2x1 
a 

k = - , ZEN", a = bed width (in units of the lengthscale r ) .  
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Moreprecisely, the pure ‘travelling waves’ (TW) are of the form U(x-wtfiy), 
where k is correlated to the periodicity in the y-coordinate (see (4.17) below), 
while the ‘standing travelling waves’ (STW) are of the form U(x-ot, ky). When 

= 0 ( A  k = 0 ) ,  we have a vertical travelling plane wave train (VTW), which we call 
a one-dimensional TW; when E =k 0, the waves are planar, but actually two- 
dimensional and are called oblique travelling waves (OTW). 

Of course the STWs with k $. 0 are also travelling (in the 2-direction) waves, but 
with a non-trivial transverse structure. Therefore, they are referred to as standing 
(with respect to the y-direction) waves. They are mainly two-dimensional and 
coupled to the OTWs by symmetry. In fact they grow out of the same point of 
bifurcation and can locally (i.e. in the linearized sense) be considered a superposition 
of two oblique waves moving both downstream but at a skew angle. Additionally it 
follows that the OTW and STW may interact, as a result of which quasi-periodic 
solutions are obtained. For this fact see the references mentioned above and the 
recent paper by Bridges (1989), who studied the bifurcation from one-phase plane 
Poiseuille flow and obtained similar results. 

We shall not deal with the computations in detail, since it is a t  least known in 
principle what can happen in such cases. In particular, a detailed stability analysis 
would require numerical methods, as the analytical computations are almost 
impossible to carry out. Here and in the next section we shall concentrate on the 
main features of the possible bifurcations, whereas more detailed investigations, 
especially of the OTWs, will be presented in other publications (for a survey see Goz 

Instead of looking for Hopf bifurcations to time-periodic solutions of the original 
system, it is considered more convenient to transform the equations to a coordinate 
system moving with the constant velocity w and to look there for temporally 
stationary, spatially periodic solutions as a function of the new parameter w. The 
main reason for doing so is that the eigenvalues CT of the original system are not 
complex conjugated for 6 =b 0, as can be seen from (3.3). Thus, it would be necessary 
anyway to perform a Galilei transformation with w = c. Of course, the bifurcation 
approach is conceptionally different, but the outcome is the same ( - w  merely 
replaces a). This relies on the fact that the symmetries S 0 ( 2 ) ,  and St are identified 
by the travelling wave ansatz (4.1) - which is justified by the fact that ai - - A ,  see 
(3.10). Thus, we can look equally well for the (Hopf) bifurcation of a solution, which 
is periodic in z. 

With the substitutions a, = -waZ,  a, = az following from the definition above, (2.9) 
become an elliptic system of mixed order: 

1990a). 

V . [ ( l - $ ) ( v - - w k ) ]  =o ,  ( 4 . 5 4  

v . [$(u - wk)] = 0, (4.5b) 

F( 1 - $) ( u - u ~ ) . V U  = - (1 - $) k +B($) (U- 0) - G ( $ )  V$ 

F 
R - (1  - $) v p  + - (V2+ KVV. ) u, (4 .54 

F 
R 

periodic boundary conditions. (4.5e) 

F ~ $ ( u - u ~ ) . V U  = -6$k-B($) (U- U )  - $Vp + U- (V2 - K T V *  ) U ;  (4.54 

Here the spatial derivatives refer to y and z ,  and k = ( 0 , l ) .  
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4.2. Linear theory 
The possible bifurcating solutions follow from the kernel of the operator 
corresponding to (4.5) and linearized in the basic state (2.5). Proceeding as at the 
beginning of the last section gives a scalar equation for the voidage: 

[ ( A ~ ~ - ~ c ~ + c - M ) ~ , ~ + ( L ) - E ~ ) ~ , - M ~ ~ + ( J ~ - H )  (a;+a;)a,l$ = 0. (4.6) 

As before, this procedure is not necessary, but convenient. The detailed analysis 
(evaluation of a 6 x 6 determinant) yields the left-hand side of (4.8) below times a 
non-vanishing prefactor. Thus, it is sufficient to restrict the investigation to the 
solutions of (4.6). 

The ansatz $ = rpl(z)p12(y) yields 

with 

where the definitions (3.4) and (3.5) are taken into account. Note that A depends only 
on k2 by symmetry. According to (4.5e), A = ih, AER such that the two real 
equations 

J(w-h) A3-Af(w)  A2 + [E(d -0) - J ( w - h )  k2] A +Mk2 = 0, (4.8) 

[E(d - W )  - J(w - h)  (k2 + A 2 ) ]  h = 0, (4.9a) 

f ( w ) h 2 + m k 2  = 0 (4.9b) 

are obtained. Considering the propagation velocity w the bifurcation parameter, our 
preliminary observations can be summarized as follows. 

(i) The possible bifurcation points ( A ,  o, k) ,  result from (4.9a, b). The eigenvalues 
A ,  i.e. the wavenumbers in the vertical direction, depend on w and k as h2 = h2(w(k2) ) ,  
where the horizontal wavenumber k assumes discrete values according to the periodic 
boundary conditions (cf. (4.4)). 

(ii) Because of symmetry, h = 0 is a trivial solution of ( 4 . 9 ~ )  giving no rise to a 
bifurcation. 

(iii) For w = d ( 4 . 9 ~ )  gives h 2 + k 2  = 0. Therefore, a stationary solution, which 
then is trivially symmetric, could bifurcate from the basic state at  this parameter 
value. This branch and its interaction with the periodic solutions was studied by 
Goz (1990a,b) for OTWs using the ansatz (4.3). It gives rise to a codimension-2 
bifurcation and homoclinic (infinite periodic) solutions. 

(iv) For h + 0, it can be concluded directly from ( 4 . 9 ~ )  and (4.9b), respectively, 
that bifurcation points can only exist if the critical values of w satisfy the two 
relations 

h < w < d and f ( w )  = m-c+2cw-wW2 < 0 (4.10) 

since h < d according to (3.7) and m > 0. But then the stability condition (3.12) is 
violated so that a bifurcation to periodic travelling waves is expected to occur only 
when the basic state is unstable. This is also seen by comparing (4.9~4, b)  with (3.11). 

To analyse (4.9), we first consider h a function of the bifurcation parameter w .  This 
shows that in the domain determined by (4.10) h2 is well defined. 
The function 

(4.11) 

is  positive for all w E (h,  d )  and strictly monotonically decreasing, if c < h. If c > h, A2(w) 

E d - w  m 
J w - h m - f ( w )  

= A 2 ( o )  = - - ~ 
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A= 

- 
0 

FIGURE 2. Critical longitudinal wavelength us. travelling wave velocity: (a) A2(w) for c < h ;  
( b )  possible behaviour for c > h. 

is strictly monotonically decreasing in (h,  $(c+2h)] u [c, d ) .  If W E  ($(c+2h), c ) ,  a 
parameter range exists in which h2(w) i s  strictly monotonically increasing. A necessary 
and suficient condition for the latter is 

( ~ - h ) ~ ( 9 d - 8 ~ - h ) - 2 7 ( d - h )  ~ ( l  -c )  = 9(d-h)  [ ( ~ - h ) ~ - 3 ~ ( 1 - ~ ) ] - 8 8 ( ~ - h ) ~  > 0, 

which dlso means q50 < S/(3+b)-O(h) .  
The last inequality shows that q50 has to be very small for a non-monotonic 

behaviour of A2(w) .  Typical graphs of h2(w) are sketched in figure 2. Roughly 
speaking, the longitudinal wavelength depends uniquely on the travelling wave 
velocity if the ratio of the inertia of the fluid to that of the particle phase does not 
exceed the corresponding ratio of the viscosity coefficients (modulated by a factor 
depending on the voidage value of the state of homogeneous fluidization). Otherwise 
ambiguities may occur, which will be discussed further in $ 5 .  

The above statement can be proved as follows. The eigenvalues are obtained as a 
function of w using (4.9a, b )  by eliminating k2.  The positivity of A 2 ( w )  in (h,  d )  follows 
from the fact that  m-f(w)  > 0 for w > h 2 0 (cf. $3). To answer the question for 
monotonicity, we have to consider the derivative of (4.9). This gives 

m J  d Z 
Q ( 0 )  =- ---A2(w) = - 

E dw N ’  

z = - ( w - h )  (w2-22cw+c)-(d-w) [w2-2cw+c+2(w-h) (w-c)] ,  

N = ( w - h ) 2 ( ~ 2 - 2 ~ w + ~ ) 2 .  

Note again that w2-2cw+c = m-f(u) > 0 for ( w , c )  =k (0,O) and that Q(h) =-a, 
Q(d)  < 0. For the following let W E  (h, d ) .  For c < h i t  follows from direct inspection 
that Q < 0. Also c > h gives Q < 0 for w 2 c. Now, the interval (h,  c )  remains to be 
considered. To do this, we first observe that Z c 0, if the term in the square brackets 
is positive, i.e. if w < g(c+2h) 3. Next, we rewrite Z ( w )  and take the derivatives: 

z ( ~ )  = 2w3 - (3d + 2c + h)  w2 + 242c + h)  w - c(d - h + 214, 

2 = 2[3w2-(3d+2c+h) w+d(2c+h)] = 2(w-d) (w-i(2c+h)) ,  

2” = 2[6~- (3d+2c+h)] .  

Hence Z(d )  < 0, Z’(d) = 0, Z ” ( d )  > 0 ;  Z’(&(2c+h)) = 0,2”(&(2c+h)) < 0 ;  Z ( 0 )  < 0. So 
Z has a relative maximum in w, = $(2c+h). Now, if Z(w,) > 0 ,  i.e. 

9(d-h)  [ ( ~ - h ) ~ - 3 ~ ( 1 - ~ ) ] - 8 8 ( ~ - h ) ~  > 0,  (4.12) 
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2 will be positive in a neighbourhood of w,. In particular, the term in the angular 
bracket of (4.12) will be positive, and this leads to 

c > Q(3+2h+[9+12h(l-h)];) > 33+h).  

(The negative sign of the root is excluded by the assumption of c > h.) 
Let us first assume h = 0 in order to reduce (4.12) to 

Z ( C )  := 36cd - 27d - 8c2. 

Then, z(a) < 0, Z(1) N 9d-8 > 0,  if d > g. But the latter can fulfilled, since from 
c > 4 and d > (n+2)c (see (3.6)) also d > 4(n+2) x is obtained. (For d 2 +f 
there exists a clc (a, 0.8321 such that &c1) = 0.) Furthermore, c > t means that 
q50 < S/(3 + 8) < 4 applies, whereas from d > 4(n + 2 )  only do < 4 is obtained. Owing to 
continuity this positivity assertion also applies to small h + 0, but with smaller q50 
than stated. 

Next, we investigate w as a function of k (resp. k2). For this, it is more convenient 
to consider conversely k2 as a function of w .  The elimination of A2 from (4.9a, b) gives 
k2 = k2(w) in the form 

> 

J d - w  -f(w) 
-k2 = - 
E w-h m-f(w) 

= : P(w) (4.13) 

with the constraint (4.10) for k2 2 O !  We conclude that for given transverse 
wavenumber several periodic voidage waves travelling with different propagation 
velocities can exist : 

For a given k the number of solutions w ~ ( h , d )  of (4.13) lies between 0 and 3. For 
suflciently large Ikl at most one solution exists. This depends on the relative magnitude 
of the parameters c, d ,  h and m. 

More precisely, the cases described below and illustrated in figure 3 can be 
distinguished (remember that m-f(w) > 0 for w > 0 and max f = f ( c ) ) .  

(I) No solution exists for f ( w )  > 0 in ( h , d ) ,  i.e. k2 = P(u)  < 0 in ( h , d ) .  
( I I a )  Exactly one solution exists in (h ,  d )  if k2(w) is monotonically decreasing. This 

is true for f ( c )  > 0, c < h-[f(c)]i, i.e.f(h) < 0 ;  or f ( w )  < 0 for all w ,  i.e. f ( c )  < 0. 
( I Ib)  Generically one or three solutions exist if k2(u)  is not monotonically 

decreasing. ( f ( w )  < 0 in (h ,d) . )  
(111) For small k2 + 0, two solutions exist (generically), but not in the whole 

interval, if c - [ f ( c ) ] i  < h < c+lf(c)] i  < d ,  i.e. f ( d )  < 0, f ( h )  > 0. 
(IV) For large k2, exactly one solution exists, while for small k2 three 

solutions exist (generically). This requires h < c-  l f ( c ) ] ;  < c+  If(c)]; < d ,  which means 
cE(h ,d) ,  f ( h )  < 0,  f ( d )  < 0 ,  h+lf(c)]x  < c < d/(n+2).  

(V)  In the special case of f ( h )  = 0, one or two possible solutions are found for small 
k2. Here we have 

Jk2/E = ( d - w )  ( o + ~ - ~ c ) / ( w z - ~ ( u ) ) ,  h2-2ch+C-m = 0. 

(a)  h = c+ [ j (c )] t  > c,  with the subcases (i) D, k2(h) > 0, (ii) D, k2(h) < 0. 
(b) h = c - [~ (c ) ] ’  < C .  

The term ‘generically’ refers to each w except for those for which P(w)  has an 
extremum. 

To see this, we observe that P has zeros in w = d and in wIv2 = c+lf(c)i, if 
f ( c )  > 0. Additionally, P-+ 00 with w+ h, if f ( h )  + 0. When f ( h )  = 0 and w = h, we 
can factorize a factor (w-h) in f ( w ) ,  which gives case (V).  Otherwise there are seven 
cases regarding the positions of the zeros off. 
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kP 

0 
- 1  

- = i 7  

FIQURE 3. k2 = P(w)  for different parameter values: (a) Case (I), (a) Case ( I Ia ) ,  (c) Case (IIb), 
(d) Case (111), (e) Case (IV), (f) Case (Va(i)), (9)  Case (Va(ii)), (h) Case (Vb). 

(i) f ( w )  < 0 for all w : this gives one of the cases named in (IIa) and (IIb) depending 

(ii) w1,2 < h :  this requires c + [f(c)]i < h and also leads to the cases (IIa, b )  because 

(iii) w1 < h < w2 < d :  obviously, f ( h )  > 0, f(d) < 0 so that a zero of P exists in 

on the monotonicity of P. 

of -f > 0 for w > h. 

( h , d ) .  This gives case (111). 
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(iv) w1 < h < d < w 2 :  this gives f > 0 in (h ,  d ) .  Hence there is no positive k2 which 

(v) h < w1 < w2 < d : the sign of P changes with increasing w E (h,  d )  from positive 

(vi) h < w1 < d < w 2 :  this is not possible here, since from the extended inequality 

is case (I). 

to negative and again to positive. This is case (IV). 

d 
[ f ( c ) ] i  < d < c + [ f ( c ) ] i  < -+[f(c)]i d 

h < c - [ f ( c ) ] ’ <  -- 
n+2 n+2 

it follows that [ f ( c ) ] i  > (n+ l ) / ( n + 2 ) ,  and thus 0 < h < -dn/ (n+2)  < 0,  which is a 
contradiction. 

(vii) d < wl ,  : This requires d < c and hence contradicts (3.6). 
In view of the reduced model (2.14), it is important to note that only cases (I) and 

(111) are possible for h = c = 0. If only the fluid dissipation is assumed to vanish 
( h  - v = 0 ) ,  the solutions (IIa), ( I Ib)  and ( V a )  are cancelled. If the fluid inertia is 
neglected but not the fluid dissipation (6 N c = 0,  h += 0) ,  solutions ( IV)  and (Vb) 
drop out. It is interesting that in case (111) only a finite number of modes with 
k = 2 d / a  can bifurcate. 

Now we know the solution structure of (4.9a, b) and thus also the dimension of the 
kernel of the linearized operator a t  the points (+o; ( w , h , k ) , ) .  For a proof of a 
bifurcation to periodic solutions, the following two results are still needed. 

Let w and k =I= 0 be given (for k = 0 see (ii) above). If a pair of wmplex-conjugated 
eigenvalues exists, then the remaining eigenvalue is real and negative. 

This is easily seen by 
with (4.8). This yields 

comparison of the ansatz ( A  - (/3+ih)) ( A  - (/3-ih)) ( A  - A3)  

The last equality yields the desired result, cf. (4.10). (The remaining two equations 
give the already known conditions with regard to the existence of pure imaginary 
eigenvalues for /3 = 0.) 

The complex-conjugated eigenvalues cross the imaginary axis transversally, i.e. 

d d 
-ReA(w,) dw N -- dw k2(w,) - -p‘ (w, )  * 0 (4.14) 

generically, i.e. except for those values of w, for which the Jirst derivative of P vanishes. 

Taking the derivative of (4.8) with respect to w in A = ih and noting (4.9a, b )  yields 
the two real equations 

2J(w-h)hReA’-2AfImA’--Afh = 0,  

2Af Re A’+2J(w- h) h Im A’+ [E+  J(A2 + k2) ]  = 0,  
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where f, f, and A’ are evaluated at some critical value 
omitted). From this i t  follows that 

2 m f ( d - w )  f ( d - h )  - LAY2 + J2(w- h)2A2] Re A’ = 
AE m-f w-h  

w = w, (here, the index c is 

= - (m - f ) (w  - h)  P’(o), 

according to (4.13). 
4.3. Nonlinear theory 

Now it could be concluded that the bifurcation to periodic travelling waves takes 
place, because all the requirements of the linear theory are fulfilled. In  particular, as 
an elliptic operator on a compact manifold the linear operator satisfies the Fredholm 
property (Choquet-Bruhat, DeWitt-Morette & Dillard-Bleick 1982 ; see also Grubb & 
Geymonat 1977). However, there is no link to  the nonlinear operator, which has to 
be formulated as a differentiable operator in an appropriate function space. This 
space has to be chosen larger than required for the pure linear problem, because when 
differentiating the hyperbolic part of the equations regularity is lost. But in this 
space the range of the linear operator is not closed, hence, it is not a Fredholm 
operator. We return to  this severe mathematical technical difficulty in the next 
section, where some resolution possibilities will be mentioned. 

It is proven by Go, (1990b) for the case of 6 = v = 0 that  a bifurcation to two- 
dimensional periodic solutions can indeed occur, but for a slightly modified model. I n  
the general case one would like to draw the same conclusion by an application of the 
equivariant Lyapunov-Schmidt method leading to  the equivariant bifurcation 
equations, i.e. the symmetry of the basic solution transfers to the bifurcation 
equations (Sattinger 1983 ; Vanderbauwhede 1982). We will not repeat the standard 
analysis of (Hopf) bifurcation in the presence of an O(2) x S’ symmetry (S0(2), x Sl), 
but instead refer to the literature cited above. From the considerations above and the 
other results (Goz 1990a, b) ,  the following conclusions can be drawn: 

Let w be the bifurcation parameter. If for a given w a pair of complex-conjyated pure 
imaginary eigenvalues Al, = ih and a pair of wavenumbers k = f (k2)z  satisfying 
(4.9a, b)  exist, then it can be stated that: 

The eigenvalues are unique (they are semi-simple but double i f  k $; 0 by symmetry), 
they cross the imaginary axis transversely almost anywhere, and the solution space of the 
linearization (4.6) is two-dimensional or four-dimensional, i f  k = 0 or k + 0, 
respectively. Corresponding to these eigenvalues the following bifurcating solutions are 
obtained : 

(i) dim ker = 2 (k = 0) : UO = U(x-  wt),  periodic in z = x-wt. This is a planar 
‘one-dimensional ’ wave travelling through the bed opposite to the direction of gravity 
(w  > h > 0). 

(ii) dim ker = 4 ( k  + 0):  
( a )  U ,  = U ( x  - o t  + &y ) or U- = U(x - wt - k y  ), periodic in z” = x - wt f &y (resp. ), i.e. 

U ,  = qJeiA(’Z-”t*’Y)+c.c.+h.o.t., (4.15) 

where C.C. means complex conjugation, and h.0.t. means higher-order terms. This is  
a pair of planar ‘two-dimensional’ waves travelling diagonally through the bed. 

They can also be considered counter-moving spiral waves on a cylinder mantle 
because of the periodicity in y .  Moreover, all solutions exist on a torus owing to the 
periodicity in both space coordinates. 

Furthermore, we assume the existence of the following solutions : 
(ii) dim ker = 4 ( k  $; 0):  
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FIGURE 4. Contour plot of an oblique wave travelling diagonally to the right. 

( b )  [Proved in (Go, 19906) for S = v = 0 and under an additional constraint, 

A wave with 'band structure' travelling downstream (opposite to the direction of 

U, = U(x-ut,  y )  = (g,eiA('z-"t)+c.c.) cos(ky)+h.o.t. (4.16) 

(or with the cos ky replaced by sin ky).  This wave can be considered locally a superposition 
of the wave pair of (a) ) .  

(iii) Only one of the wave types named in (i) and (ii) can be stable (depending on the 
parameters). When they change stability, this means that a secondary bifurcation to a 
quasi-periodic solution takes place. 

Finally, it is seen from the above formulae (or from (4.7)) that I% is related to the 

conjecture otherwise] 

gravity), but stationary in the spanwise direction : 

transverse period by 
AL = k. (4.17) 

An oblique wave travelling diagonally to the right is represented in figure 4. The 
symmetry patterns and the approximate shape of the standing travelling waves are 
illustrated in figure 5. Of course, they rely on the linear theory; it has to be 
determined numerically what these 'bubbles ' actually look like. 

4.4. Some mathematical problems 
In contrast to the corresponding positive results for incompressible one-phase flows, 
the existence of standing travelling waves has not yet been found owing to 
mathematical difficulties. We have already described some of these difficulties above. 

To go into more detail here, let us first state that we have been able to prove the 
existence (at least for small times) of a unique solution to the initial-boundary-value 
problem corresponding to the reduced model described by (2.14) (Goz 1991). Next, 
the bifurcation to vertical or oblique travelling waves has been shown without 
referring to the special ansatz (4.3). For this a transformation to Lagrangian 
coordinates had to be carried out in order to circumvent the difficulties originating 
from the hyperbolic part of the equations, which was then reduced to an ordinary 
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FIGURE 5. Symmetry pattern of a standing travelling wave. 

differential equation. I n  these coordinates, the linearization is a well-defined 
procedure (thus justifying the analysis of $3), but again the linear non-homogeneous 
problem cannot be solved in the two-dimensional case. This means, that the 
Fredholm property does not apply, and the existence of the standing travelling 
waves cannot be proved. Nevertheless, if we modify the system slightly by 
subtracting the temporal mean values of all expressions occurring in the equations, 
it is possible to show the bifurcation of oblique and standing travelling waves for this 
new system. These solutions correspondingly exist in a slightly different function 
space, namely with the temporal mean value zero (Goz 1990b). If it could be 
demonstrated that the subtracted expressions yield zero for the solutions of the 
modified system, then these solutions would actually represent the desired solutions 
of the original system. 

As a consequence, i t  may well be that the STWs do not exist which would be as 
strange as i t  was interesting in view of the usual results in the presence of symmetry. 
This, however, might indeed happen, as can be seen in the following approach. 
Consider the parabolic regularization of (2.144, i.e. 

-a ,$+v.[( l -$)U] = -SV2$, (4.18) 

where e > 0 is a small parameter. This yields a parabolic system with a better 
solution p (as regular as u ) .  It is known that the desired bifurcation theorem applies 
for this. Equivalently we can consider the elliptic regularized version of ( 4 . 5 ~ )  : 

V.[( l -$)  ( u - w k ) ]  = - E V 2 $ .  (4.19) 

Since the regularized system, when considered a new model, does not make much 
sense in the present context, we would have to investigate the limit E + 0. Of course, 
this is the point where the next difficulty arises. 

A short calculation, e.g. for (4.19), shows that a small E induces only small 
perturbations in the bifurcation curves of 34.2. In  particular, the bifurcation points 
are located in a neighbourhood of order E of those points, which are considered as 
possible bifurcation points in the case of E = 0. This suggests that  the bifurcation 
scenario might be the same in both cases. 
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It may very well happen, however, that one or other bifurcation branch vanishes 
in the limit 8 + 0. Certainly the branches representing the oblique travelling waves do 
not vanish, since that are plane waves, whose existence has been proved definitely 
and in two different ways. But we are not able to control the important branch of 
standing travelling waves. Nevertheless, note what can happen in the limit process, 
if the bifurcation equations are considered. 

With regard to the present symmetries, the bifurcation equations for e > 0 assume 
the following form to first approximation (cf. e.g. Erneux 1981) : 

(4.20) 

where A and B are two complex non-zero functions of the physical parameters of the 
system. 

If Re ( A  +B)  =k 0 and Re ( A  -B) =k 0, three solutions of (4.20) exist : the two OTWs 
determined by IzI = 0 or IwI = 0, respectively, and the STW given by 

1zI2 = 1wI2 = -Re (a) h/Re (A + B ) .  

However, if Re ( A  +B)  -+ 0 as e+ 0, then only the OTW solutions remain, whereas the 
STW branch vanishes. In  this case the higher approximations would have to be 
considered which would be a formidable task. If, on the other hand, Re (A +B)  does 
not vanish in the limit e+O, this would strongly support the conjecture that the 
bifurcation scenario remains the same. 

Otherwise this would be an interesting example for which the conclusions from 
linear theory fail to hold in the nonlinear regime, although such conclusions are valid 
for nearby systems. In any case, this shows that one has to be very careful in 
transferring results from linear to nonlinear theory of partial differential equations. 
We are presently investigating this relationship using the regularizations discussed 
above. 

5. Bifurcations of higher order 
So far, we have taken w as the bifurcation parameter such that unique 

wavenumbers A and k were obtained for given w .  It is, however, completely 
reasonable to interchange the role of w and k. So let k be a given wavenumber (arising 
from the given data such as the period in the spanwise direction) and search for those 
w (and then for A )  for which (4.9a, b )  can be fulfilled, i.e. for which the flow becomes 
periodic in the streamwise direction, too. On the basis of the results of the preceding 
section (cf. figure 3), we see that not every w can be obtained by variations of k, and 
indeed there are zero to three solutions depending not only on k but also on the 
constellation of the other parameters of the system. In addition, there are degenerate 
points with P'(w) = 0 where the number of solutions changes. 

For example let us consider case (IV) of figure 3. Starting with a large k, exactly 
one wave speed h < w < d is obtained as solution in the above sense. Some wave 
speeds in the interval (h, d )  are excluded if we do not allow the zeros of the function 
f to wander out of this interval ; this would first lead to case (111) and then to (I1 b) .  
Another change of c ,  h, and/or m would eventually lead to a one-to-one 
correspondence between k2 and w as in case (IIa). With decreasing IkJ (resp. k2) (by 
varying the bed width a, see (4.4)), a point of degeneracy is reached, from which two 
possibly connected continua of solutions emanate (cf. figure 6a).  
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FIQURE 6. Degenerate bifurcation and its unfolding. (a) The appearance of two TW solutions at a 
point of degeneracy. ( b )  The interaction of plane waves originated by the process illustrated in (a )  
propagatipg in different directions (schematically) (same k gives different w ,  thus different A ,  hence 
different k). 

FIQURE 7. Symmetry pattern of a secondary bifurcating solution due to mode interaction. 

Considering these results together with other known results on degenerate Hopf 
bifurcations and their unfoldings (Kielhofer 1979 ; Golubitsky & Roberts 1987), 
possible interactions of these two branches leading to quasi-periodic solutions may 
be suspected. For the corresponding OTWs this means that their streamwise 
wavenumber h is different owing to the difference in w (cf. figure 2), even though their 
transverse periodicity is the same. Via the relation (4.17) this results in a more or less 
different direction of propagation of these plane waves (with different velocities !), 
which in turn leads to certain interference patterns. This is shown schematically in 
figure 6 ( b ) .  

Next, quasi-periodic solutions could also be obtained with three underlying 
frequencies, i.e. a 3-torus of solutions, by interaction of one of the TWs of one branch 
with the quasi-periodic solution with two different frequencies (case iii of the last 
statement of $4) of the other branch. Even higher degeneracies (or their unfoldings 
in turn) are possible when a parameter constellation is assumed, for which not only 
the first, but also the second derivative of P ( o )  vanishes. These cases will not be 
investigated any further here. The symmetry pattern of a secondary bifurcating 
wave corresponding to a mode interaction between an STW and an OTW travelling 
diagonally to the right is plotted in figure 7. It must be added that even if the STWs 
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FIQURE 8. Connected continua of periodic solutions. (a) Re-entering of bifujcating branches. (6) 
Critical values of o as a function of k2 : OTW connections for different k (keep k and change w means 
that h changes, k changes; cf. (4.17)). 

do not exist, the interaction of the various OTWs could nevertheless lead to 
secondary etc. bifurcations yielding patterns which are similar to those of the STWs. 
Thus, more and more complex solution patterns are obtained until a point of 
transition to turbulence is reached. 

Another possibility would be that the two solutions, which are obtained for given 
k and connected by the degeneracy, correspond to one and the same (nonlinear) 
solution branch. This means that the periodic solution bifurcates from the basic state 
a t  some critical value w1 and re-enters at another critical value w2 with both values 
of w depending on the same k but yielding different h (see figure 8a).  

In  fact, such a scenario was obtained by Goz (1990a, b) for the bifurcation of 
periodic oblique and/or vertical travelling waves. We now want to point out that this 
is only possible if 6 + O !  However, in this case a travelling wave system is used where 
the solutions depend only on the variable 5 := z- wt f Ly, and results might have to 
be interpreted differently. 

In fact, in this case we consider plane waves where L, i.e. the direction of 
propagation, is given (even though i% may be considered an additional parameter), 
and the existence and connection of periodic solutions are studied with respect to  the 
main bifurcation parameter w. If we keep the direction of propagation and vary the 
propagation velocity w, this results in a continuous change of the spatial periods of 
the solution and in particular corresponds to changes in the transverse periodicity 
which can be seen by the relation (4.17). 

Of course this must match with the geometry of the underlying domain but even 
then several solutions with multiple periods may be possible and, more generally, 
when searching for all solutions possible in principle of such a type admitted by the 
equations, we could regard the geometry of the system itself as a variable parameter 
(as a above) to gain the desired results. 

As a result, we see that the second possibility contains a connection along the curve 
k2 - P(w) and not between certain points at the intersection of this curve with a line 
k2 = const. (cf. figure 8 b ) .  This will be dealt with in more detail elsewhere. 

More detailed results on the bifurcating travelling and standing waves and their 
interrelated stability properties, especially a possible exchange of stabilities leading 
to quasi-periodic solutions, and the connection of branches emanating from 
degenerate points, require further numerical or analytical work. We are currently 
doing some of this. 

In particular, we have calculated the linear stability of a vertical travelling plane 
wave to transverse perturbations in the case of S = v = 0 (announced in Goz 1990a, 
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details unpublished). The results indicate a secondary stationary bifurcation to  
another branch of periodic solutions of the form 

U(x,  y,t )  =P(x-wt)eiku+c.c .+h.o.t .  (5.1) 

Obviously, these waves have a structure that is similar to that of the above- 
mentioned standing travelling waves; but their origin is different. Note that this 
scenario of primary and secondary bifurcations is in accordance with experimental 
observations (Didwania & Homsy 1981 a, b )  as well as with recent numerical results 
(Hernandez & Jimenez 1990). 

6. Conclusions 
We have investigated a model based on the theory of interacting continua for the 

description of the flow of two miscible phases in a fluidized bed from a bifurcation 
point of view. Although no mathematically rigorous solution of the existence and 
bifurcation problem corresponding to the full equations (2.9) has been found up to 
now, we though it necessary to analyse the linearized travelling wave problem in 
order to  see what kind of solutions are principally allowed within this model. Indeed 
we have seen that the equations may possess a rich variety of solutions, which will 
be investigated in more detail in the near future. 

I n  particular, we obtained the existence of vertical and oblique travelling waves, 
whose interactions can lead to higher instabilities and, subsequently, to the 
occurrence of patterns of increasing complexity. This would be even more the case 
if the so-called standing travelling waves could be shown to exist. A partial result in 
this direction was obtained for the case of S = v = 0. This point, however, requires 
further research. 

Moreover, since the main instability leads to vertical travelling plane waves, all the 
other primary bifurcating branches with non-trivial transverse structure may be 
unstable, but gain stability by secondary or higher-order bifurcations. These 
scenarios have to be evaluated in more detail with analytical as well as numerical 
methods. Another possibility consists in a secondary bifurcation of the vertical 
travelling wave solution to  some other standing travelling wave; indeed, this is the 
scenario usually observed in experiments. Again, further instabilities are likely to  
occur. I n  any case, this leads to waves containing several different frequencies and 
finally to  chaotic behaviour. 

The computation of the actual shape of all these solutions and the comparison with 
the experiments is of particular interest. However, since the principal behaviour of 
the system does not depend strongly on the detailed modelling - for instance of the 
drag force or of voidage-dependent viscosity coefficients - i t  may be difficult to 
choose among the different models. 

The results presented are part of the authors Ph.D. thesis written under the 
supervision of Professor W. Jager within the Sonderforschungsbereich 123 a t  the 
Institut fur Angewandte Mathematik der Universitat Heidelberg. This work was 
supported by the Deutsche Forschungsgemeinschaft. 
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